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Institute of Physics, University of Tokyo, Komaba, Megro-ku, Tokyo 153, Japan 

Received 14 June 1984 

Abstract. We show that the generalised Atiyah-Singer index theorem describes not only 
the U( I )  anomaly, but also the non-Abelian anomaly. These anomalies are determined in 
arbitrary even dimensions without ambiguity of coefficients. The index theorem reveals 
new kinds of anomalies. The relationship between these anomalies and the topology of 
Yang-Mills fields is discussed. 

In a Yang-Mills gauge field theory coupled to a massless chiral fermion, two different 
types of chiral anomalies are known. One is the anomalous divergence of global axial 
Noether current (U( 1) anomaly), in four dimensions, 

a,J' = -&IT-' Tr FwuF$ 

= -:IT-' Tr aPA" +fA"APA") ( 1 )  

(metric (++++), = 1, A,, = A t  T" where T" is the anti-Hermitian representation 
of the generator of the gauge group G), and the other is the anomalous covariant 
divergence of local gauge current (non-Abelian anomaly), 

(D,,Jp)" =&IT-* Tr T" dp~,,upff(Au #'A" +fA'APA"). (2) 

Recently, Zumino er a1 (1984) and Stora (1983) found mathematical tools which 
gave these anomalies in arbitrary even dimensions. Here we briefly review their results. 

First, the U( l )  anomaly in D = 2 n  dimensions is given by 

d*j=ch , (E)  = ( l / n ! )  Tr[-(i /2~)F]",  (3) 

where ch,(E) is the nth Chern character (which is a 2n form) of the vector bundle 
E, on the fibre of which the Lie algebra of G is represented, and the product implies 
the wedge product of differential forms. (For mathematical notation and details see 
Zumino et a1 (1984) and Eguchi er a1 (1980).) 

In describing the non-Abelian anomaly, we use an elegant formalism by Stora 
(1983) introducing the Faddeev-Popov ghost w and the BRS operator S such that, 

(4) SA = -dw - [A, w ] m  so = -'[ 2 w,wl. 

S is defined as an anti-derivative anti-commuting with the exterior derivative and odd 
differential forms. w can be interpreted as a Mauer-Cartan form in the infinite- 
dimensional group of gauge transformations (Bonora and Cotta-Ramusino 1983). 

The non-Abelian anomaly means that the fermionic effective action T[A] is not 
BRS invariant (here the operator S is equivalent to infinitesimal gauge transformation 
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generated by w because T[A] does not include w ) ,  

ST[A] = G [ w  ; A]. ( 5 )  
It is important to notice that the fermionic determinant det iDA = exp( -T[A]) = 

5 D&D$ exp(-$iDA$) itself is not well-defined for a chiral fermion because the chiral 
Dirac operator iD acts on the spinor space S +  of positive chirality while the image 
lies in the spinor space S -  of negative chirality. So iD does not have an eigen- 
value problem. This fact is closely related to the origin of the non-Abelian anomaly. 
However, the difference between the two effective actions I‘[A’] - T[A] = 
-Tr In iDAt - (-Tr In iDA) = -Tr In D3,’DA. = -In det( p)>’DA8) is well defined because 
@)A’DA,:  S’+ S’ has eigenvalues. For this reason, ( 5 )  is well defined. Applying S on 
( 5 )  and noticing S 2  = 0, we get, 

S G [ w  ; A] = 0. (6) 

This is the Wess-Zumino consistency condition for the non- Abelian anomaly (Wess 
and Zumino 1971). Stora gave a solution to this equation starting from the ( D +  
2) -dimensional Chern character 

chn+l(E) = [ l / (n  + 1  

where F’ is given by 

F‘ = DA’ +h[A’, A’], 

with 

!I( -i F’/ 2 7~ 
ni-1 

I 

A ’ = A + w ,  D = d + S .  

The ( D  + 1)-dimensional Chern-Simons secondary characteristic class Q,,,[A’] with 
the property eh,+,(E’) = DQ,+,[A’] can be easily calculated (Zumino er a1 1983, Stora 
1983, Eguchi er a1 1983). We expand it in powers of w :  

Q,+,[A‘l= QO,+i[Al+ QL[w;  AI + Q’D-i[w; AI +. + QO”+’[wI, 

where Qz[w ; A] is pth order in A and qth order in w. It is easy to see that 

satisfies the condition (6). This gives the non-Abelian anomaly in D = 2 n  dimensions. 
Zumino et a1 (1983) also started from the ( D  +2)-dimensional Chern character to get 
the same result and gave a general formula for calculating (7). 

Their derivation of non-Abelian anomaly is unsatisfactory for the following reasons. 
First, they used the Wess-Zumino condition (6) which is purely topological and its 
relation to the ‘analytical side’ ST[A] was not considered. So it still requires perturba- 
tion theory to determine the coefficients. Second, it is not clear why one should start 
from the ( D  +2)-dimensional Chem character. What is the meaning of the additional 
two dimensions? Third, the relationship between the U( 1 )  anomaly and the non-Abelian 
anomaly is not clear. 
On the other hand, the relationship between U( 1 )  anomaly and the Atiyah-Singer 

index theorem (Atiyah and Singer 1968a, b, Atiyah and Segal 1968) is well known 
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(Fujikawa 1979, 1980). The index theorem for a chiral Dirac operator is, on the 
D = 2n-dimensional sphere SD, 

n+- n- = ISD ch(E) = lsD ch,(E) =- :!( -- l~),  I S D  Tr F"' 

where n, and n- are the numbers of zero modes of iP and its adjoint (iB)*, respectively, 
ch(E) =ch , (E)Och, (E)O. .  .Och,(E) is the total Chem character and integration 
over S D  picks up the nth Chern character. Equation (8) is, in essence, nothing other 
than the U(1) anomaly. 

We shall generalise the index theorem (8)  to the one which includes not only the 
U( 1) anomaly but also the non-Abelian anomaly. We note that while the well known 
index theorem is the one for a single Dirac operator, we shall use the generalised index 
theorem for a family of Dirac operators (Atiyah and Singer 1971). In our approach, 
the unsatisfactory aspects of the methods by Stora (1983) and Zumino et a1 (1984) 
are remedied. First, notice that the index theorem combines the analytical side and 
the topological side. It really 'derives' anomalies without ambiguity of coefficients. 
Second, the meaning of the additional two dimensions (in the case of the non-Abelian 
anomaly) becomes clear. It is closely related to the topology of the Yang-Mills fields. 
Third, the index theorem gives a unified view of the topological nature of both U( 1) 
and non-Abelian anomalies. Furthermore, it reveals new kinds of anomalies. 

The topological origin of the non-Abelian anomaly has also been considered by 
Alvarez-Gaumi and Ginsparg (1983) and Gomez (1983). Their works and ours are 
overlapping and complementary. 

Now we discuss the topology of the Yang-Mills gauge potential functional space. 
Let us first consider the four-dimensional Yang-Mills field. For definiteness, we take 
the gauge group G = SU( m )  ( m  3 3). The topological aspects of Yang-Mills fields 
have been well investigated by Atiyah and Jones (1978). The functional space of the 
gauge potential in Euclidian space R4 is homotopically characterised by the asymptotic 
condition A(x) + U-'(x) dU(x) (as 1x1 + CO). So the functional space may be identified 
with R3(G), the space of maps from S 3  to G. Alternatively, one may consider the 
compactified space-time S4 = R4 U CO. This time, the relevant functional space is 
C( G) = A/g, the space of potentials (A) modulo four-dimensional gauge transforma- 
tions (8 ) .  C( G) is again homotopically equivalent to R3( G). We consider the topology 
of this space. 

First, I10(R3( G)) = 113( G) = 2, which means R3( G) has connected components 
labelled by integer k, the well known instanton number. Next, I12(R3( G)) = II,( G) = Z, 
that is, there exist 2-spheres in R3( G) (or C ( G ) )  that cannot be continuously deformed 
to one point. In fact, this topology will turn out to be related to the non-Abelian 
anomaly as we shall see later. 

In general, I12,,(R3( G)) = I I Z n + 3 (  G). If we take G such that IIZn+3(G) = 2 for some 
n 2 2, there exist non-trivial 2n-spheres in R3(G). This corresponds to new kinds of 
anomalies. 

Now couple to the gauge field a massless chiral fermion in a complex representation 
of the gauge group G. This representation can be embedded in a representation of 
U(m) for some m. 

The Bott periodicity theorem states that II , (U(m))=Z for odd r < 2 m .  This 
topology is also important for the index problem of the chiral Dirac operator. For 
more details see Atiyah and Jones (1978). 

We now illustrate the mathematical setting of the generalised index theorem. 
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On the analytical side, take C(G) to be the base space and consider the 'index 
bundle' index €3, which has an analytic connection A(a) on C( G), A(a) is determined 
by the chiral Dirac operator €3, parametrised by A E C( G)?. The total Chern character 
of this bundle ch(index €3) can be obtained from A(a) as usual. 

On the topological side, take C (  G) x S4 ( S4 being space-time) to be the base space. 
Define the topological connection A(T) on C(G)t. We choose the total connection of 
the topological bundle ET on C (  G) x S4 as A = A(T) + A  where A is the usual connection 
form (or gauge potential) on S4. One obtains ch(ET) from A. When one integrates 
ch( ET) on S4 only, one gets another characteristic class on C( G). The generalised 
index theorem (Atiyah and Singer 197 1)  states that this topological characteristic class 
coincides with the analytic one, i.e. 

ch(index D) = Is. ch(ET). ( 9 )  

Recall that this is the direct sum of even differential forms on C( G). On the right-hand 
side, one must pick up and integrate terms of 4-form on S4. 

Now let us look at the 0-form part of (9), 

cho(index €3) = Is4 ch2(ET). (10) 

ch,(index €3) is the 'dimension' of the bundle index 0, which is equal to n, - n-, and 
ch2(ET) = -&-' Tr F 2 ,  so it coincides with (8) with n = 2. But this time the equation 
should be regarded as a function on C( G). On the connected component labelled by 
instanton number k it is constant, n, - n- = k. In a word, the zero-form part of (9) 
describes the U( 1)  anomaly. 

Next look at the 2-form part of (9), which reads, 

ch,(index D) = Is4 ch,( ET). 

To see that this describes the non-Abelian anomaly, we use a trick analogous to 
the inverse process of compactifying R4 to S4. Suppose a two-dimensional disk D2 
in A on the boundary S1 of which the connections are connected by one-parameter 
gauge transformations. If we project A to A/g = C (  G), identifying gauge-equivalent 
connections, we get an S 2  in C(G). We take the inverse process of this, that is, lift 
( 1  1) from S2  in C (  G) to D2 in A. Since the Chern character can be written as the 
exterior derivative of the Chem-Simons secondary characteristic class, ch, (index €3) = 
SQ1[A'"'], ch3(ET) = (d +S)Q,[A +A'T'], where d and S are exterior derivatives on S4 
and A, respectively. So, it is easy to see that on the gauge-equivalent boundary SI in 
A, ( 1  1 )  becomes, 

Q'[A'"'] = I Q:[A'T'; A], (12) 
s4 

where on the right-hand side we picked up terms of 4-form on S4 from Q5. Now we 
want to obtain an explicit expression of (12). We note that on the gauge-equivalent 
curve SI, 6 is equivalent to S (BRS operator) and A(a) = -€3-'SD, A'T' = o (1-form on 

t The explicit forms of A'"' and A'T' are not relevant. But one may take A'"' = -D,'6'Xand A(T) = -D-'S'A A r  

where 6 i s  the exterior derivative in C ( G )  and D, is the covariant derivative. (Notice S'DA = S ' X )  
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generating a one-parameter gauge transformation on SI). In general, 

ch , (E)  = - ( i / 2 ~ )  Tr F = - ( i / 2 ~ )  d Tr A, 

ch,(E) = (i /48r3) Tr F3 

= (i/48.rr3) dStr(A(dA)'+;A3 dA +;A5) 

(Str: Symmetrised trace) 

or 

Q,[A]= - ( i / 2 ~ )  Tr A, 

Q5[A] = (i /48r3) Str[A(dA)2 +:A3 dA +$A5]. 

We replace A and d in Q,[A] by A + w and d + S, and pick up terms of first order in 
w, 

~ : [ w ;  A] = (i /48r3) Str[wd(A dA +$A3)]. 

So we get from (12), 

1 
i / 2 ~  Tr(D-'SD) =s 5 Str[w d (A dA +;A3)], 

s4 

where Tr of the left-hand side is the trace over functional space, y matrix and gauge 
group indices. The left-hand side can be rewritten as follows,? 

( i / 2 r )  Tr(pl-'Spl) = -( 1/27ri) Tr(S In ipl) = -( 1 / 2 ~ i ) S  ln(det iD) = (1 /2~i )Sr [A] ,  

so that 
(14) 

Str[w d(A dA +fA3)]. 

This completes the derivation of the non-Abelian anomaly from the 2-form part of 
the generalised index theorem (9). 

Now we briefly discuss the global integration of the non-Abelian anomaly. The 
Wess-Zumino consistency condition ( 6 )  means that the anomaly G[w;A] can be 
locally integrated by infinitesimal gauge transformations. However, the possibility of 
global integration remains a question. Some authors (Ishikawa 1983, Rossi et al 1984) 
have discussed this problem and concluded that the coefficient should be an integer. 
In our approach, this corresponds to integrating 1-form (12) on S' in A, or equivalently, 
integrating 2-form (11) on the corresponding S 2  in C ( G ) .  This automatically gives 
an integer, which assures the global integration in the exponential factor (i.e. 
exp( -T[A"]) - exp( -T[A]) is a single-valued function of U(x)(  E Q4( G))  where A' 
means the gauge transformation of A by U(x)) .  

The integer above depends on how to take S1 in A (or S2  in C ( G ) ) .  What is the 
meaning of this integer? On the analytical side, look at (14), which means phase 
change of fermionic determinant. (The modulus of det iD is of course gauge invariant.) 
When globally integrated, the integer equals the winding number of this phase change. 
On the topological side, notice that 1 -parameter four-dimensional gauge transforma- 
tions can be regarded as a map from S5 to G. The integer indicates the homotopy 
class of this map, corresponding to n5( G )  = 2. 

t Even if 0 has zero modes (i.e. k # 01, this quantity (14) is well defined. 
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Now we return to the index theorem (9) and discuss the meaning of the higher 
form parts. For example, we take the 4-form part, 

ch,(index D) = J ch4(ET). 
s4 

As before, we take S4 in C ( G )  and lift it to D4 in A on the boundary of which 
connections are connected by three-parameter gauge transformations. On this S3 ,  ( 16) 
becomes, 

Q3[A'"'] = A]. (17) 5,. 
We calculate this explicitly to get 

1 1 
-- Tr(P,-'SP,)3 =- 5 Str(u3[-2(dA)' +$A2 dA +$A4]}. 

247' 4 ! ( 2 ~ ) ~  s4 

The right-hand side is non-trivial if II,( G) is non-trivial. What is the meaning of this 
new anomaly? Notice the quantity on the left-hand side of (18) has the same form as 
Tr(U ' dUj3, which we use for evaluating the instanton number. In the above, we can 
regard P, as an element of infinite-dimensional Lie group and (18) means that there 
is an instanton-like configuration in the analytic bundle index 0. More concretely, 
(18) means E, has S3 phase factor and it is not invariant under three-parameter gauge 
transformations. 

The physical meaning of this new 'anomaly' is not yet clear, but we propose a 
conjecture that this is the anomaly of hidden symmetries of the gauge theory. 

The generalisation to arbitrary even dimensions is immediate. The index theorem 
reads, ,. 

ch(index P,) = J ch( ET), 
S D  

the zero form part of which is simply equation (8) as a function on C(G) describing 
the U(1) anomaly. And the higher form part, when lifted to A and converted to 
gauge-equivalent boundary S' ( r: odd), becomes, 

(i/27r)'+'(s!/r!) Tr(P,-'SP,)'= Q L [ w ;  A], (20) JsD 
where r = 2s + 1. In the special case of r = 1, this reduces to the non-Abelian anomaly, 

ST[A] = 27ri I S D Q b [ w ;  A]. (21) 

The non- Abelian anomaly is closely related to the path-integral quantisation of the 
gauge field, though chiral anomalies are known to be 1-loop results. The crucial 
mathematical relation is S' A R4( G) = S 2  A R3( G),? which means that one-parameter 
gauge transformations are equivalent to two-parameter physical variations of the gauge 
field. This is the origin of additional two dimensions, or 2-form in e( G) = R3( G). 
Notice one wants to integrate fermionic effective action over C ( G )  (physical gauge 

t A means smash product. Take topological space X ,  Y with base points xo,yo. X A  Y is defined as 
( X  X Y ) / ( X  v Y )  where X v Y = ( X  X{yo } )  U ({x,,} X Y ) .  
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potential space), not over A (whole gauge potential space). Non-trivial characteristic 
classes of the generalised index theorem imply an obstruction to defining the action 
as a function over C(G). The non-Abelian anomaly and Gribov ambiguity (Singer 
1978) has the same mathematical origin: There exists no section in any nontrivial 
principal fibre bundle. 

Now the difference between the U(l)  anomaly and the other anomalies is clear. 
Because the U( 1) anomaly has its origin in II,( G), it is insensitive to four-dimensional 
gauge transformations. On the other hand, the non-Abelian anomaly is sensitive to 
one-parameter gauge transformations because it corresponds to II,( G). In general, 
anomaly (20) is sensitive to r-parameter gauge transformations. 

As we have seen, the chiral fermion can be used as a probe for investigating the 
topology of the Yang-Mills field. When one quantises the gauge field, one should 
keep in mind that there exist non-trivial cycles in C(G). 

The idea of the generalised index theorem can be applied to the gravitational 
anomalies in (4n +2)  dimensions discussed by Alvarez-Gaumi and Witten (1984). We 
shall discuss this in a future paper. 

The author would like to thank Professors Y Fuj i  and K Kawarabayashi for careful 
reading and helpful comments on this manuscript. He also thanks Professor M Kato, 
Dr K Yamagishi and Dr S Watamura for useful discussions. 

Note added. After finishing this work, we were informed that Atiyah and Singer have also discussed the 
relationship of the generalised index theorem (Family’s index theorem) to anomalies (Atiyah and Singer 
1984). 
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